Report # 121 : Unreinforced stone wall rural housing (lower and middle income)

by Riccardo Vetturini, Fabrizio Mollailoli, Paolo Bazzurro

Typical house occupied by low-income and middle-class families in rural areas of central Italy. The building studied in this report is located in the municipality of Nocera Umbra, province of Perugia, Umbria region, Italy. This type of building, with minor differences in construction practice and material, is frequently found throughout central Italy. The four-story building was constructed more than 200 years ago and is located on a steep hillside, with the elevation facing the valley completely above grade; the uphill elevation is two stories above grade, with the two stories below ground-level surrounded on two sides by earth-retaining stone masonry walls. This building was severely damaged by the 1997 Umbria-Marche earthquake and was further weakened by the elements before repair and reconstruction efforts began in 2003. Figures 1 through 5 show the damaged building before reconstruction. Figure 6 helps to locate this building in the cluster of buildings around the old citadel. The exterior elevation facing the downhill slope is displayed in Figure 7. The overall floor plan of this building is L-shaped; it accommodates two residential units and has a basement with four separate spaces and entrances for housing farm animals and storing tools. Building plans showing the extent of wall and floor reconstruction can be seen in Figures 8 to 10. Figures 12 to 14 display details of the seismic retrofit. Most buildings of this type, however, are smaller in size, rectangular in shape, and often have one unit. It is very common for these buildings to share perimeter walls with adjacent buildings. In these rural regions it is typical for many generations of a single family to live in the same residence and the building has undergone numerous additions and modifications over its life span to accommodate changing living requirements. The construction modifications are typical of Italian rural regions. The architecture is fairly plain with few architectural details of significant historic value; these were repaired and restored during the seismic reconstruction project. Gravity loads in the building are carried by thick unreinforced stone walls constructed using a technique referred to as “a sacco”. The walls consist of two outer stone wythes that are poorly connected by a limited number (if they are present at all) of bond-stones. The space between the two outer wythes is filled with an inner core of smaller rubble masonry, poorly consolidated and poorly graded by a mixture of lime or mud mortar. This construction technique results in walls with limited vertical and lateral capacity because of the presence of voids between the stone masonry and the lack of effective continuity between the inner and outer wythes. The pre-earthquake construction technique and the quality of the mortar in the stone masonry walls were poor. The lack of continuity between the original stone masonry walls and the walls constructed during the various structural additions worsened their condition (see Figure 4). The majority of the floor slabs are constructed of timber beams with intermediate timber joists. Other areas of more recent vintage consist of vaulted floor construction assembled from steel beams and clay-infill bricks arching between them with a lightweight concrete topping layer. Poor seismic performance is expected, mostly because of the ineffective connection between interior and exterior wythes of the walls and existing structural deficiencies (e.g., flues, niches, etc.); lack of effective wall-to-wall, wall-to-slab, and wall-to-roof connections; and lack of continuous foundation-to-roof walls due to the vertically unaligned openings on the facade. Very thick walls present throughout the building, especially at the foundation level, and occasional iron tie-rods add to the structural strength.

PDF

Report # 120 : Unreinforced stone wall rural housing (upper income)

by Riccardo Vetturini, Anacleto Cleri, Fabrizio Mollailoli, Paolo Bazzurro

This is a typical house occupied by affluent families in rural areas of central Italy. The building discussed in this report is called “Palazzo Spinola” and is located in the town of Foligno in the Umbria region (see Figures 1 and 2). The building has four stories above ground and a completely below-grade basement. Floor plans and cross sections are shown in Figures 3 to 9. Significant geometrical complexity has resulted from additional construction since it was originally built in the seventeenth century. The original construction includes only a portion of the interior building as well as the entire exterior facade. The building has an interior courtyard within the perimeter of the building. It contains a well and a cloister (a covered path with ornate columns) that separates it from the grounds. These are also part of the original construction and have significant artistic value. The upper portion of the cloister is accessible and serves as a connection between the two exterior wings of the residence. The thick walls are constructed using a typical technique called “a sacco.” This construction technique consists of two outer wythes that are poorly connected by transversal bond-stones (“diatoni”) and filled with essentially unconsolidated inner cores of rubble masonry, poorly cemented with lime mortar. The floor slabs may be of mixed construction, depending on the era. The ground floor has “a padiglione” vaulted ceilings, which are constructed of solid bricks assembled in fairly regular fashion. The second-floor ceilings are vaulted and partly frescoed. Some of the ceilings in the residence have great artistic value, with painted wooden panels (“cassettoni”). The floor slabs on the upper stories are considerably simpler in construction and are made of timber trusses with hollow-clay tiles in between. The structure supporting the roof is made of timber trusses with both vertical and diagonal struts and bottom chords. Some trusses are more complex, similar to Palladian trusses. Buildings of this type are expected to demonstrate fairly poor seismic performance, mostly due to the ineffective connection between interior and exterior wall wythes and existing structural deficiencies (e.g., flues, niches, etc.); lack of effective wall-to-wall, wall-to-slab, and wall-to-roof connections; and the unbalanced outward thrust of the vaults. The structural strengths are represented by very thick walls present throughout the building, especially at the foundation level, and by the occasional iron tie-rods.

PDF

Report # 113 : “Casa Torre” construction: multistory tower masonry with stone pillars and wood or arched beams

by Mauro Sassu, Chiara Cei

This construction originated during the Middle Ages in response to the threat of military invasions. The building plan is a square lattice, 5-7 meters, formed by three or four floors, with one room on each floor, and a total height of 15-20 m. It is a common technique found in Pisa but also found frequently in many municipalities of Tuscany and adjacent districts. The structure of the building is supported by four stone columns connected by arches (circle or oval) or by beams at each floor; the floor is supported by a series of wood beams (especially pine) with wood tables and/or clay blocks. The upper floors of the earlier historic buildings often contained a wood balcony supported by cantilevered wood beams. Some balconies were fully enclosed structures with clay-tile roofing. The entrance on the first floor could be accessed by means of a detachable wood staircase.

PDF

Report # 31 : Brick masonry farmhouse with a “dead door”

by Agostino Goretti, Daniela Malvolti, Simona Papa

This is a single-family farmhouse construction, found throughout the Padania plain (Reggio Emilia Province). This housing type accounts for approximately 20% of the entire housing stock in the Reggio Emilia municipality. This building practice is no longer followed. Most of the existing buildings were built in the 19th and 20th centuries. The residential and agricultural sections of the house are separated by a central area closed at one end and hence called a “dead door.” The residential section usually has two floors (typical story height 2.5 – 3.0 m) and a sloping roof. The agricultural portion, usually larger than the residential section, also has two floor levels. The first-floor height is on the order of 2.5 – 3.0 m whereas the second-story floor height ranges from 5.0 – 9.0 m. As a result, the roof in the agricultural section of the building is at a higher level than that of the residential. The first floor is used as a cow shed and the second as a hayloft. The load-bearing structure consists of brick masonry walls in lime mortar. The walls are characterized by variable thickness, decreasing from 280 mm at the first-floor level to 150 mm at the second-floor level. There are brick masonry columns in the interior of the agricultural section at the second-floor level. The buttresses can be found in the exterior brick masonry walls. Both the residential and agricultural sections have wooden floors; there are vaulted floors in the central area. In some cases, composite floors made of steel beams and perforated bricks can be found. Although the building plan is very regular, the seismic performance of this building type is rather poor due to the vertical irregularity (offset of the floors in the residential and agricultural sections), the absence of connections between walls and between the walls and floors, the thrusting of the roof, and the deterioration of materials.

PDF

Report # 30 : Reinforced concrete frame building

by Maurizio Leggeri, Giuseppe Lacava, Eugenio Viola

This building type is commonly used for multifamily housing in urban areas of Italy and is particularly common in the region of Potenza (Basilicata). Prior to 1981, this region was not included in the official seismic zonation map of Italy, in spite of the historical evidence. However, after the major earthquake of November 1980, the entire Potenza province was recognized as a seismically prone area. Consequently, seismic considerations were not taken into account for in the building design projects predating the 1980 earthquake. The main load-bearing structure is reinforced concrete frame with masonry infill walls. Many buildings of this type were strengthened using the financial assistance provided by the government. The upgrade typically consists of installing new shear walls and L-shaped columns, and strengthening the foundation.

HTML | PDF

Report # 29 : Single-family historic brick masonry house (Casa unifamiliare in centro storico, Centro Italia)

by Dina D’Ayala, Elena Speranza, Francesco D’Ercole

This single-family housing type, found throughout the Central Italy (Centro Italia) mainly in hill towns and small cities, is typically built on sloped terrain. A typical house is 3 stories high, built between two adjacent buildings with which it shares common walls. The main facade of the house faces a narrow road. The ground floor level (perforated with openings on one side only) is used for storage, while the other two stories are used for residential purposes. Typical buildings of this type are approximately 3 m wide and 9 m long. The building height on the front side is on the order of 4.5 m, whereas the height on the rear side is larger (close to 5 m). All the walls are made of unreinforced brick masonry in lime mortar, while the floor structures are vaults at the ground floor level, and timber floor structures at the higher levels. The roof is made of timber and is double-pitched, sloping down towards the front and rear walls. Buildings of this type are expected to demonstrate rather good seismic performance, mostly due to their modest height. Problems related to seismic performance might be caused by the adjacent buildings (typically one story higher). Seismic strengthening techniques for buildings of this type are well established and strengthening of some buildings has been done after the recent earthquake.

PDF

Report # 28 : Single-family stone masonry house

by Dina D’Ayala, Elena Speranza

These buildings form the historic centers of most hilltop villages and towns in central Italy. They are arranged in long terraced clusters. Hillside dwellings have common walls and a variable number of stories (up to 2 or 3). Buildings situated in the valley usually have 4 or 5, with a maximum of 6, stories. The typical house is usually formed by one or two masonry cells, depending on the depth of the block, and with a staircase (usually but not necessarily) running along the common wall. The masonry is made of roughly squared stone blocks set in lime mortar, and the walls are made of two leaves with a rubble core at the base, tapering at the upper floors. Limestone is used for the blocks, while a particular type of tuffa stone is used for the lintels above the openings. At the ground level there are sometimes vaulted structures. The upper stories were originally spanned by timber beams, with joist and timber boards covered by tiles. The roof structure is usually original and made of timber trusses. In the recent past, many of the original floors have been replaced either with iron ‘I’ beams and jack arches (renovations occurring before World War II), or during the last fifty years, with weakly reinforced concrete slabs. Other alterations include vertical extensions, the closing and opening of windows, and introduction of hygienic services. A high proportion of these houses exhibit the traditional iron ties introduced in the 18th century to tie together the orthogonal walls and floors for better seismic performance. After the introduction of modern seismic codes in the 1980s, many buildings have undergone further strengthening through the use of RC ring beams and concrete jacketing of walls.

HTML | PDF