Report # 95 : Prefabricated metal construction of the Modern Movement

by Maria D. Bostenaru

This urban housing construction was practiced for about 20 years during the early 1900s in Germany. Single-family houses and blocks of flats, both built according to the same construction system, are included in this report. This construction was built in what were once the outlying areas of German cities. Typically, these low-cost housing units are rented by the residents. The buildings consist of a row of several individual, 20-meter-long units, each of which usually contains two apartments on each floor. The load-bearing system is iron skeleton with brick infill. Usually, the skeleton is made out of columns and beams, but dense column grids were sometimes used to minimize the spans of metal joists as a cost-saving measure. Experiments with various materials for the bricks were tried as part of the continuous search for improved insulation. The floors are also made out of bricks on iron joists. Stiffening is usually provided by diagonal ties at the staircases, which are placed in the middle of each building unit. Because of the seismic activity, both along the Rhine and in the Swabian Jura affecting Baden-Wuerttemberg, seismic codes (DIN) were issued in 1981 and have been updated. Standards have existed since 1957 and are expected to be included in the new European code, Eurocode 8.

PDF

Report # 26 : Semi-rigid steel frame with “Khorjinee” connections

by Behrokh H. Hashemi, Mohsen G. Ashtiany

This housing type is commonly used for low-rise building construction in Iran, mainly for family apartment buildings. This structure is characterized with a special type of semi-rigid beam-to-column connection called “Khorjinee connection.” This connection consists of a pair of continuous beams spanning over several columns and connected to the column sides by means of angle sections. Beam and column are welded to the angle section. A major problem with the Khorjinee connection is that it is very difficult to improve the rigidity of the connection in the weak direction (the direction perpendicular to the connection) since the crossed beams are connected to the web of Khorjinee beams. Thus, in the weak direction of the frames, the connections are considered as pinned (hinges) and the bracing is used to resist seismic loads. However, in the Khorjinee direction, since the possibility of using the bracing is very limited, the frame is considered a rigid structure. Also, out-of-plane partial beam-to-column transfer of bending moment and early onset of failure in the angles are the most likely causes of failure for a building subjected to lateral earthquake loads. These buildings are vulnerable in earthquakes (e.g., 1990 Manjil earthquake).

PDF

Report # 25 : Steel frame with semi-rigid “Khorjini” connections and jack arch roof “Taagh-e-Zarbi”.

by Arzhang Alimoradi

This is a common type of urban/rural construction in many parts of Iran. It is widely used in the cities as a popular structural system for low-rise residential buildings because of the ease of construction and of erecting the frame. Buildings of this type are up to 5 stories high, with a height/width aspect ratio on the order of 1.5. This system consists of a special kind of steel framing with heavy brick infills as partitions. Roof girders are connected to the supporting columns by means of semi-rigid connections. Diaphragms may range from flexible to rigid depending on the detailing and the construction quality. The structure is extremely heavy because of the brick infills between the roof beams. The roof is constructed in the form of a shallow arch called a ‘jack arch’. Roofs, ceilings, and floors constructed in this way contributed to building failures and to an unusually high death toll in many recent earthquakes in Iran. As many as half the buildings completed in the early 1970s in Iran had jack arches. In a jack arch system, steel beams or a reinforced concrete joist system span the distance between the main girders across the length of the building. An arch made of small bricks connect the beams. Each arch rises only about ten centimeters. The ‘valleys’ of this wave-like surface are filled with mortar. The completed ceiling, roof, or floor is thick and heavy. Frequently the steel support beams are not tied together properly or are left untied (From: http://www.johnmartin.com/eqshow/647014_00.htm). Seismic vulnerability of this system is observed as medium to high. The dynamic behavior of the system in the two main perpendicular directions of the building plan differs significantly because of the differences in the stiffness and configuration of the connections in these two directions. Furthermore, ‘X’ bracings are usually used in the weak direction which further magnifies the non-uniform behavior of the structural system.

HTML | PDF

Report # 3 : Steel Frame Buildings with Shear Walls

by Elias Arze-L.

These buildings are modern steel composite structures ranging from 3 to 24 stories. The buildings have a rigid steel frame with floor diaphragms made of post-tensioned concrete slabs or composite steel decking, with or without a concrete slab covering. Additional lateral force-resisting elements are added to the steel moment-resisting frame to stiffen the structure and enhance the seismic performance. These elements are steel #X# or concentric braces and reinforced concrete shear walls. The seismic performance for these composite structures is very good. Most of these buildings are used as apartments or offices.

PDF